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10:00-11:00 Modular Arithmetic, In-
finite Descent and Pell’s Equation.

A Problem with Remainders and Powers

(a) Find all positive integers n for which 17n − 1 is divisible by

10.

(b) Find all positive integers n for which 17n + 1 is divisible by

10.

Idea of solution: Calculate powers of 17 and look at the last

digit:

n 0 1 2 3 4 5 6 7

17n 1 17 289 4913 83521 1419857 24137569 410338673

Note that 17n − 1 is divisible by 10 if the last digit of 17n is

1. This happens for n = 0, 4 and (we conjecture) whenever n is a

multiple of 4.

Also 17n + 1 is divisible by 10 if the last digit of 17n is 9. This

happens for n = 2, 6 and (we conjecture) whenever n is twice an

odd number.

How would you prove this?
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International Maths Olympiad 1964
Problem 1

(a) Find all positive integers n for which 2n− 1 is divisible by 7;

(b) Prove that there is no positive integer n for which 2n + 1 is

divisible by 7

Idea of solution: For n = 0, 1, 2 . . . let 2n (mod 7) denote the

remainder of 2n on division by 7.

n 0 1 2 3 4 5 6 7 8 9 10

2n 1 2 4 8 16 32 64 128 256 512 1024

2n (mod 7) 1 2 4 1 2 4 1 2 4 1 2

If 2n−1 is divisible by 7, then 2n (mod 7) = 1. We conjecture

this happens whenever n is a multiple of 3.

If 2n+1 is divisible by 7, then 2n (mod 7) = 6. We conjecture

this never happens.

How do you prove this pattern?

Here is something you might be able to prove:

Lemma: Let n ≥ 0 be a positive integer and a be any integer.

Then 2n + a is divisible by 7 if any only if 2n+3 + a is divisible by

7.

Proof: The difference is:

2n+3 + a− (2n + a) = (23 − 1)2n = 7× 2n

which is a multiple of 7.

Can you see how to prove the conjectures by induction now?
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Pell’s Equation with d = 2

We are interested in finding positive integers a, b such that

x

y
≈

√
2

As x and y are integers, so x2 − 2y2 is an integer. For good

approximations x/y to
√
2 we look for solutions to:

x2 − 2y2 = r

where r is a small integer. If r = 1 this is an example of Pell’s

Equation while if r = −1 this is an example of Negative Pell’s

Equation.

Here is a plot of solutions to negative Pell’s equation 2y2 = x2+

1, with the integer points (±1, 1) and (±7, 5) marked. To create

the graph, we looked at x in the range −10 ≤ x ≤ 10 and plotted

y at small intervals of x, using the formula y =
√

1
2(1 + x2). There

is another branch (not shown) where y is negative.
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Pell’s equation is famously amenable to the method of ascent,

where we can make bigger solutions out of smaller ones.

Specifically, suppose

x2 − 2y2 = r

Define x′ = 3x + 4y and y′ = 2x + 3y. Then

(x′)2 − 2(y′)2 = (3x + 4y)2 − 2(2x + 3y)2

= 9x2 + 24xy + 16y2 − (8x2 + 24xy + 18y2)

= x2 − 2y2

This is a special case of Brahmagupta’s Identity.
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We can start with some solutions to Pell’s equations, such as

12 − 2 × 02 = 1 and 12 − 2 × 12 = −1 for r = 1 and r = −1

respectively, and then apply the transformation (x, y) 7→ (x′, y′)

repeatedly, to generate more solutions.

x y x2 − 2y2 x y x2 − 2y2

1 0 1 1 1 -1

3 2 1 7 5 -1

17 12 1 41 29 -1

99 70 1 239 169 -1

577 408 1 393 985 -1

3363 2378 1 8119 5741 -1

19601 13860 1 47321 33461 -1

114243 80782 1 275807 195025 -1

We can instead look at this in terms of rational approximations

to
√
2. If

t =
x

y

is an approximation, then

t′ =
x′

y′
=

3x + 4y

2x + 3y
=

3t + 4

2t + 3

is a better one. If we keep iterating, and reach a limit, then that

limit must satisfy:

0 = (2t + 3)t− (3t + 4) = 2(t2 − 2)

6



Question: Do all solutions to Pells Equation / Negative Pell’s

Equation arise from the basic solutions (1, 0) and (1, 1) by applying

the ascent formula?

To see why the answer is yes, try reversing the ascent formula,

to get a descent formula:

x′ = 3x + 4y; y′ = 2x + 3y

x = 3x′ − 4y′; y = −2x′ + 3y′

That reduces any integer solution to another integer solution

on the same hyperbola. Eventually that reduces x to a range

where we can check manually there are no further solutions.

In particular with r = 0 we can see that there are no solutions

to x2 − 2y2 which is (another) proof that
√
2 is irrational.

Pell’s Equation with d = 3

Are there solutions to x2 − 3y2 = r for r = 0 or r = ±1?

We now have a different ascent / descent formula:

x′ = 2x + 3y; y′ = x + 2y

x = 2x′ − 3y′; y = −x′ + 2y′

As before, we have x2 − 3y2 = (x′)2 − 3(y′)2.

Exercise Use ascent / descent to show there are infinitely

many integer solutions to x2 − 3y2 = r when r = 1, but none

when r = 0 or r = −1.

Can you think of another way to prove there are no integer

solutions to x2 − 3y2 = −1, using remainders modulo 3?
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Question: Where did the ascent / descent formulas come

from? The maps from (x, y) to (x′, y′) and back again?

The origin in lost in the mists of time. Probably someone two

thousand years ago tabulated the first six or seven solutions to

Pell’s equation by hand, and then spotted the ascent relationship

between one solution and the next. Once you’ve guessed the for-

mulas, then it’s easy to show they work.

Tabulating those six solutions seems like a lot of work, and it

would have been, especially without a calculator. But there are

some short cuts, for example noticing that in solutions of x2 −
2y2 = ±1, the value of x must be odd, immediately cuts out half

the cases. There are many more tricks like that.

Spotting the ascent / descent patterns becomes easier if you

know you are looking for a linear transformation. If you’ve seen

other problems with integer (or rational) points on quadratic curves,

you might guess the form and then find the coefficients - the 2’s,

3’s and 4’s, by trial and error.

If you already know of Brahmagupta’s identity, that gives a big

clue to find the ascent / descent formula. Brahmagupta’s identity

was known to Diophantus in the 3rd century AD. Bhaskara II

used this method to solve Pell’s equation around 1150. (John Pell

lived in the 17th century and the attachment of his name to the

equation was a mistake).

Algebraic number theorists think of forms such as x2 − 2y2

as a norm on the algebraic integers quadratic number field. The

solution to Pell’s equation are related to the group of units in that

field. But that goes way beyond what we need now.
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11:30-12:30 Ramsey Theory

A Problem about Creating New Integers

Two different integers u and v are written on a board. We perform

a sequence of steps. At each step we do one of the following two

operations:

(i) If a and b are different integers on the board, then we can

write a + b on the board, if it is not already there.

(ii) If a, b and c are three different integers on the board, and if

an integer x satisfies ax2 + bx+ c = 0, then we can write x

on the board, if it is not already there.

Two questions:

(a) Starting with u = 6 and v = 8, show that any integer can

eventually be written on the board after a finite number of

steps.

(b) (EGMO 2024 Problem 1) Determine all pairs of starting

numbers (u, v) from which any integer can eventually be

written on the board after a finite sequence of steps.
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Solution to First Question

First step: Show we can write any even number of 26 or more.

To get there, write:

14 = 6 + 8

20 = 6 + 14

22 = 8 + 14

26 = 6 + 20

28 = 6 + 22 = 8 + 20

30 = 8 + 22

Then for any even n ≥ 32 use 6 + (n− 6).

Second Step: Show we can write any integer x ≤ −3.

We will try to find a, b, and c already written down with:

0 = ax2 + bx + c = a|x|2 − b|x| + c

We only need to find one combination to make this work, so sup-

pose c is the balancing item. Then we need c = b|x| − a|x|2 to be
a large even number so we know it is already written down (and

c will also be a multiple of |x|).
Let us try taking a as small as we can, say a = 6. So now we

are looking for b with b|x| − a|x|2 ≥ 26 and also b ≥ 26, which is

equivalent to:

b ≥ max

{
26,

26

|x|
+ 6|x|

}
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Let us also make sure b is not a multiple of |x|. This is where we
need x ≤ −3.

Now a = 6 is on the board. Also b, c are on the board from

the first step, as they are even and at least 26. Furthermore, b ̸= c

as c is a multiple of |x| and b is not. Then by choice of c:

ax2 + bx + c = 6|x|2 − b|x| + (b|x| − 6|x|2) = 0

Therefore, we can write x on the board.

Third step: We have now written all even numbers 26 or

higher, and all negative numbers up to −3 on the board.

We now show how to write any remaining integer c on the

board. Choose an even number a such that

a ≥ max{26, c + 3}

So a is already on the board (large and even, step 1) while c− a

is also on the board (less than −3, second step). Finally then we

can write c = a + (c− a).

The conclusion is that all integers can be written on the board

after finitely many steps.

Solution to Second Question See

https://www.egmo.org/egmos/egmo13/solutions.pdf.
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Number Painting Problem (Schur’s Theorem)

Alice takes a list of the positive numbers from 1 to 2024 inclusive.

She paints every number either red or blue.

Prove that there are positive integers x and y, not necessarily

distinct, such that x, y and x+ y are all painted the same colour.

Solution Say a set of positive integers is sum-free if it con-

tains no x, y, z with z = x+ y, with x, y not necessarily distinct.

Suppose (for a contradiction) that we can find two disjoint sum-

free sets, red and blue, whose union contains {1, 2, 3, 4, 5}.
Suppose without loss of generality that 1 is red. Then (as

1 + 1 = 2), 2 must be blue, and for the same reason 4 must be

red. Now neither 3 nor 5 can be red, as 1 + 3 = 4 and 1 + 4 = 5.

So both 3 and 5 must be below.

We have a contradiction because 2, 3 and 5 are all blue, but

2 + 3 = 5.

Further Question: Does the result still hold if Alice has

three colours instead of two? How about four, five or six? What is

the smallest number n of colours such that the subsets of {1, 2, . . . 2024}
can be partitioned into n sum-free subsets?
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IMO 1964 Problem 4

Seventeen people correspond by mail with one another, each one

with all the rest. In their letters only three different topics are

discussed. Each pair of correspondents deals with only one of

these topics. Prove that there are at least three people who write

to each other about the same topic.

Generalised Problem

Let n ≥ 1 be an integer. Suppose that 3 × n! people correspond

with one another, each one with all the rest. In their letters, only

n different topics are discussed. Prove that there are at least three

people who write to each other about the same topic.

Proof: By induction on n.

If n = 1, then we have three people and one topic. All three

people therefore write to each other about the same topic.

Now suppose that n ≥ 2. Pick one individual, Anna. Then

Anna writes to 3×n!−1 people. There must be one topic on which

Anna writes to at least 3× (n− 1)! people. That follows because

otherwise Anna writes on n topics to at most 3 × (n − 1)! − 1

people per topic, which can account for only 3× n!− n people, a

contradiction as this is less than 3× n!− 1.

Now choose a topic on which Anna writes to at least 3×(n−1)!

correspondents. Call this topic X .

If two of those correspondents also write to each other on topic

X , then we have three people corresponding on a common topic,
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that is Anna and the other two correspondents, all on topic X .

If none of these 3× (n−1)! correspondents write to each other

on topic X , then those 3× (n− 1)! correspondents use only n− 1

topics between them, out of which, inductively there are three

writing on a common topic.

This is a special case of Ramsey’s Theorem.

Application to Schur’s Theorem

Suppose that Alice paints the numbers from 1 to 3×n! each in one

of n colours. Then Schur’s theorem states that there are x, y, z,

(with x and y not necessarily distinct) such that z = x + y and

x, y, z are the same colour.

Proof: Think instead of 3 × n! correspondents with n top-

ics. The topic on which two correspondents, a and b, write is

determined by how Alice coloured |a− b|.
Now there are three correspondents, let’s say a, b, c who corre-

spond with each other on a common topic, by Ramsey’s theorem.

Label these so that a < b < c.

Then Alice must have coloured b−a, c− b and c−a the same

colour. But as c−a = (b−a)+ (c− b) we now have two numbers

and their sum, all of which Alice has painted the same colour.
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Remark: We have proved a theorem that gives an upper

bound on the so-called Schur numbers. There are smaller lists of

integers than from 1 to 3 × k! which cannot be painted into n

sum-free subsets.

Here are some best possible results (the later ones obtained

with a great deal of computing effort).

� The numbers {1, 2, 3, 4} can be partitioned into two sum-

free subsets, but the numbers {1, 2, 3, 4, 5} cannot, as we

have already seen.

� The numbers {1, 2, . . . 13} can be partitioned into three sum-

free subsets, but the numbers {1, 2, . . . 14} cannot.

� The numbers {1, 2, . . . 44} can be partitioned into four sum-

free subsets, but the numbers {1, 2, . . . 45} cannot.

� The numbers {1, 2, . . . 160} can be partitioned into five sum-

free subsets, but the numbers {1, 2, . . . 161} cannot.

See https://arxiv.org/abs/1711.08076.

We have already shown that the set {1, 2, . . . 2160} cannot

be partitioned into six sum-free subsets. With a little work, our

argument can be refined to show that {1, 2, . . . 1958} cannot be

so partitioned, which implies {1, 2, . . . 2024} also cannot be par-

titioned into six sum-free subsets. But that is still not the best

possible result.

Science does not currently know the smallest set {1, 2, . . . S(6)}
that cannot be partitioned into six sum-free subsets.
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